8.3 - Analyzing Geometric Sequences and

Series

Warmup

Find the indicated sum for each series.

Geometric
$$S_n = \frac{a_1(1 - r^n)}{1 - r}$$

1 of 13

1)
$$1 + 2 + 4 + \dots$$
; S_8
255

2)
$$3 + 6 + 12 + \dots$$
; S_7 381

3)
$$4 + 12 + 36 + \dots$$
; S_6

4)
$$7 - 35 + 175 - \dots; S_5$$

1456

3647

5)
$$7 + 70 + 700 + \dots$$
; S_7

6)
$$11 + 33 + 99 + \dots$$
; S_8

7,777,777

36,080

2 of 13

An **explicit rule** gives a_n as a function of the term's position number n in a sequence.

A **recursive rule** give the beginning term and a recursive equation.

Explicit Definition

$$a_n = a_1 + (n-1)d$$

$$a_n = 5 + (n-1)4$$

$$a_n = 4n + 1$$

Recursive Definition

$$a_1 = 5$$

$$a_n = a_{n-1} + 4$$

3 of 13

Recursive Equations for Arithmetic and Geometric Sequences Arithmetic Sequence

 $a_n = a_{n-1} + d$, where d is the common difference

Geometric Sequence

 $a_n = r \cdot a_{n-1}$, where r is the common ratio

Write a recursive rule for the sequence.

$$b. 19, 13, 7, 1, -5, \dots$$

$$a_1 = 2; \ a_n = 7a_{n-1}$$

$$a_1 = 19; \ a_n = a_{n-1} - 6$$

4 of 13

Find the first 6 terms.

$$a_1 = 1$$

$$a_2 = 1$$

$$a_n = a_{n-2} + 2 \cdot a_{n-1}$$

$$a_3 = ??$$
 $a_4 = ??$
 $a_3 = a_1 + 2 \cdot a_2$ $a_4 = a_2 + 2 \cdot a_3$
 $a_3 = 1 + 2 \cdot 1$ $a_4 = 1 + 2 \cdot 3$
 $a_3 = 3$ $a_4 = 7$

1, 1, 3, 7, 17, 41

5 of 13

Find the first 6 terms.

$$a_1 = 1$$

$$a_2 = 1$$

$$a_n = a_{n-2} + 2 \cdot a_{n-1}$$

Practice - Find the first six terms

1)
$$a_1 = 8$$

 $a_n = a_{n-1} - 1$
8, 7, 6, 5, 4, 3

2)
$$a_1 = 1$$
, $a_2 = 2$
 $a_n = (a_{n-2})^2 + a_{n-1}$
1, 2, 3, 7, 16, 65

6 of 13

Write a recursive rule for the sequence.

1	
2	
4	
8	
16	

$$a_1 = 1, \ a_n = 2 \cdot a_{n-1}$$

$$a_1 = 1$$
, $a_2 = 1$, $a_n = a_{n-1} + a_{n-2}$

7 of 13

Practice - Write a recursive rule for the sequence.

a)
$$a_n = 17 - 4n$$

$$a_1 = 13, \ a_n = a_{n-1} - 4$$

b)
$$\frac{5}{6}$$
, $\frac{7}{12}$, $\frac{1}{3}$, $\frac{1}{12}$, ...

$$a_1 = \frac{5}{6}, \ a_n = a_{n-1} - \frac{1}{4}$$

8 of 13

Fibonacci Sequence

$$a_1 = 1$$
 $a_2 = 1$

$$a_n = a_{n-2} + a_{n-1}$$

Practice - Write a recursive formula (hard)

$$a_1 = 1, a_2 = 1$$

 $a_n = 2 \cdot a_{n-1} + a_{n-2}$

$$a_1 = 1, a_2 = 2$$

 $a_n = a_{n-1} \cdot a_{n-2} + 1$

